A FoxPro FoxPro decompiler
Robert Plagnard

IngéLog Paris France

robert.plagnard@ingelog.fr
2Abstract

2Why?

3Setup

3Settings

3Config.fpw

3Dump.ini

4Dvfp.ini

4Preference section [Prefs]

5Cosmetic section [Cosmetic]

5Projects

5Examples

5Bugs

6Tutorial

6First uncompile: Hello.fxp

7Hello2.fxp

8App decompilation: p1.app

8Simple expression: Somme.fxp

10More complex

10Recommandations

Abstract
Dvfp is a FoxPro decompiler written in FoxPro. In the open source spirit the source project is given. Dump is a program which allows you to analyze the structure of an App or related file. The source project is also given.

Why?

Why write a FoxPro decompiler? Why write it in FoxPro? And why publish it?
To answer the first question I would say that it sometimes happened to me (but fortunately seldom!) not to remember what was that version installed on a user’s PC. Thus I needed to compare app or exe generated by FoxPro. It once also happened to me to loose sources and to be quite glad to be able to rebuild them from compiled modules. It may occur when you have many laptops in the field with many applications and many versions.
Another interest of a decompiler is to permit source comparisons when sources differ only with comments or style. Programs like WinDiff or SourceSafe loose their mind in that case. You only have to compile the two sources and to compare the results of the two decompilations.

Another point is the FoxPro understanding and knowledge that we can gain after that. It’s obvious that we have a better understanding of FoxPro. And last but not least is the discovery pleasure, to understand how it works, it’s a puzzle and some kind of fun.

In 1995, at the beginning of FoxPro I wrote in Delphi my first FoxPro decompiler. In those days PCs were slower and I would never thought to write such a program in FoxPro. But year after years processors went faster and faster. Then one day of 2004 the absurd idea came to me, why not make a try with FoxPro. With some well designed classes, it could be fun. What a challenge for this language which, although forsaken, and despite of all its flaws, remains a friendly language rather complete and very effective.
And now, it’s done, it works rather well. It demonstrates, if it was needed, what we can do with this language and its friendly environment.

I let this code in the public domain. I hope it will contribute to understand how things work in FoxPro. I also hope that it will help others to go further. I think that nearly 99% of the code decompiles correctly, but I am sure that it remains some statements which will not decompile the good way. There are probably not more large difficulties left, but we can do more to reach a 99.99% correct decompiler. For instance it would be an easy task to rebuild a project from all the components we get up to now. It would be interesting to add a user friendly graphical user interface.

Last question was why do we not decompile encrypted files? It has two reasons. The main reason is because I do not know how FoxPro ciphers its App (Refox knows). But I nearly never use encryption for my FoxPro Application. And last this program is not a contribution to piracy.

I will start saying how to setup the dump and the decompiler, and then the times will be ready to explain how things are working together, if you guys are still interested in.

Setup
All programs and sources are in the Dvfp zip file. The first thing to do is to decompress the zip where you like to. You should get a Dvfp directory in which you will find the following files:

· Dvfp.exe

· Dvfp.ini

· Dump.exe

· Dump.ini

· Config.fpw

· Dvfp project

· Dump project

and following subdirectories:
· Doc
· Prg
· Oth

· Test

If you have the VFP9 runtime or the VFP9 full development version you could already double click on Dump.exe or on Dvfp.exe, you would be prompt with a dialog to choose a file which must be a Visual FoxPro compiled production (fxp, mpx, qpx, app, exe, dll).

But I recommend you to read what comes next before running those programs.

Settings
The two programs have nearly no graphical user interface. They are driven by INI files. The only interface is a dialog for the choice of a file, a possible echo to the foxpro screen to show the progress, and if asked, a result text file shown at the end of the process. These programs can also be used like batches if you give them the file name to analyse on the command line. You can also run “do dump” or “do dump with ‘test\p.fxp’” from the the FoxPro command window.

I am going to give you the keys of INI files but we have to say something important about the config.fpw file.

Config.fpw

Regarding to a heavy use of recursion in expression analysis, when the depth of recursion is too deep, that is to say where the complexity of expressions is high you will get a “stack overflow. It’s certain with VFP8, so forget it. So you must use VFP9 but it’s not sufficient, you have to set the stacksize in the Config.fpw file.

Add the line

Stacksize = 256
In your config.fpw file. It is fundamental.

Dump.ini

The Dump program is driven by Dump.ini which must be located in the same directory. It enables to manage some output options. That can be important when APPs are large. If all the outputs are enabled, a large APP can generate hundreds of thousands lines. Outputs are written to a text file (with the same name as the APP but with extension .TXT) located in the APP’s directory. (Warning: take care of TXT file having the APP’s name, they will be overwritten)

	AppDump
	To start with a complete dump of the APP file

	CodePartDump
	To dump code components.

	OtherPartDump
	To dump other components, including SCX, VCX, … images and other tables.

Last two dumps and the first (AppDump) are quite the same thing but when you start it can be interesting to see them all on very short App. But you will fast turn off AppDump.

	LineTable
	This table has information witch allows FoxPro to determine the source line numbers. It is of no use for decompiling. But it has some interesting explanations. We will see that later.

	Echo
	Send dots to screen to show progress

Dvfp.ini

The Dvfp decompiler is driven by Dvfp.ini which must be located in the same directory. It enables to drive preferences and some cosmetic options.

Preference section [Prefs]
	Decompile
	If you want the decompiled source

	Dump
	If you want the hexadecimal dump of each statement.

These two options can be enabled together, in this case the dump is written before the source code. There is no advantage to disable them both.
	Echo
	Send dots to screen to show progress

	DebugExpressions
	can be used on small programs to include/understand how are analyzed the fixed expressions in Polish form post. As the volume of exit is rather important, this option should in general be decontaminated.

	AllInOneFile
	is an interesting option to carry out tests. It makes it possible to indicate a single file name for all outputs.

If AllInOneFile is not empty (ex: out.prg), all decompiled source codes will be written in this file and the file will be shown at the end of the run. In the case of an APP that makes possible to write into the same file all the sources and to immediately see the results. It is interesting to carry out fast tests. In this case, and this case only, one freedom with the language has been taken. We add an extra procedure statement at the beginning of each prg. So it makes possible to test the compile of the single file without error.
If AllInOneFile is empty Dvfp decides by itself where to put the results. There are two cases:

In case of a singleton, (frx, mpx, qpx,..) Dvfp will create a file (prg, mpr, qpr, …) in the same directory than the given file. Take of your source files they would be overwritten by Dvfp if they are in the same directory. (this is a reason why I prefer to set a name to AllInOneFile when I check some little prg).

In case of an App file proper subdirectories are created in the app directory, to store prg, vcx, scx, mpx, … and oth (others) files. So uncompile Apps file in directories setup for that.

Cosmetic section [Cosmetic]

This section makes it possible to manage comments generated by the decompiler.
	AppHeader
	Write or not the App header

	PartTable
	write or not the App components (or module) table.

	PartTitle
	write or not the title of the components

	PartHeader
	Write or not part (or module) header

	ProcBetween
	A char (or empty) to build comment lines around procedures

	ClassBetween
	A char (or empty) to build comment lines around class defines

Projects

Projects are given. You just will have to accept the project directory change. In the spirit of open source you can adapt these projects and their sources so long as you preserve the copyright which is written at the beginning of dfox.prg file. Thanks for that.
Examples

You can use Dump or Dvfp on themselves (but in the repertories Test \ Dvfp or Test \ Dump). Once the APP was extracted from the EXE, one can directly choose the APP, it is not necessary to extract it again!

Bugs

There are most probably still bugs in this version. Please tell me.

Tutorial

Using Dump you will quickly understand that there is only one format for all compiled files. Mxp files, app, mpx, mnx, or others qpx have the same general format. We will talk of APP files. An APP is a container which can have many parts that we can call modules. Modules can be compiled code, but often tables (scx/sct or vcx/vct) or included files like images (ico,jpg,…) . Fxp, mnx, mpx, qpx are Apps which contain only one code module. Exe and Dll build by Visual FoxPro are very little executables witch load the FoxPro Runtime and extract an APP located in the exe file.

When you give an exe file or a dll file to Dump or Dvfp they try to find the APP inside the file, and if found they extract it in the same directory. In this release, if the APP file already exists near the exe file, it’s an error, so when the two exist, you must select the app.
First uncompile: Hello.fxp

Let the following prg :

Hello.prg

? 'Hello world'

Compile it to get a Hello.fxp. With the following options in Dump.ini:
AppDump = .F.

CodePartDump = .T.

OtherPartDump = .F.

LineTable = .F.

Hello.fxp analysis with Dump writes :

Dump started 14/10/2006 19:57:36

APP HEADER of C:\DEV\DVFP2\DOC\HELLO.FXP

 Signature F2FE

 Crypted FF

 Engine 0220

 nbParts 0001

 MainPart 0001

 ^PartTable 000000B7

 ^PartNameTable 00000080

 PartNameTable size 00000037

 Idk(1) 00000000

 Idk(2) 00000000

 Idk(3) 00000000

 Idk(4) 00000000

 Idk(5) 0000

 Idk(6) 15B1

PART TABLE

 Part Type Start Next FileType NameOffset unused1 unused2 Name

 1 00 00000029 00000080 00000000 00000012 00000000 00000000 hello.fxp

PART hello.fxp

PART HEADER

 NbProc 0000

 NbClass 0000

 ^Main 00000025

 ^ProcTable 00000000

 ^ClassTable 00000000

 ^IdkTable1 00000047

 LineTableLen 00000002

 ^LineTable 00000043

 IdkBytes F9 9D 4E 35 1C 00 00 00 FC

PART DUMP

00000000 00 00 00 00 25 00 00 00-00 00 00 00 00 00 00 00 %...........

00000010 47 00 00 00 02 00 00 00-43 00 00 00 F9 9D 4E 35 G.......C...ù.N5

00000020 1C 00 00 00 FC 1A 00 17-00 02 F8 03 01 FC FB 0B

00000030 00 48 65 6C 6C 6F 20 77-6F 72 6C 64 FD FE 03 00 .Hello world....

00000040 55 00 00 71 01 31 00 00-00 00 00 00 00 00 00 00 U..q.1..........

00000050 00 00 00 00 00 00 00

 Table1

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Dump ended 14/10/2006 19:57:36

Uncompile Hello.fxp gives (It depends of chosen options in Dvfp.ini)

 ? 'Hello world'

You can asked for statement dump (this turns on some cosmetic options too) in Dvfp.ini, so you get:

/ C:\DEV\DVFP2\DOC\HELLO.FXP

* 22:05:38 : 1 Parts, Main = 1, Engine = 2.32

* Part Entry Table Offset = 0x000000B7

* Entry Name Table Offset = 0x00000080

* Entry Name Table length = 0x00000037

* Part Genre Start Next NameOffset IDK1 IDK2 IDK3 Name

* 1 0 29 80 12 0 0 0 hello.fxp

/ hello.fxp

* debMain at offset 0x00000025

* 1 procs in ProcTable at offset 0x00000000

* IDK1=47 IDK2=2 IDK3=0

* 0x00000025 0 -1

*/--

procedure hello && added by dvfp when AllInOneFile is set

*/--

* L=26, 0 variables :

 02 F8 03 01 FC FB 0B 00 48 65 6C 6C 6F 20 77 6F 72 6C 64 FD FE

 ? 'Hello world'

 55

* 0 classes in ClassTable at offset 0x00000000

The « ? ‘Hello world’ » statement is dump, its hexadecimal representation is :

02 F8 03 01 FC FB 0B 00 48 65 6C 6C 6F 20 77 6F 72 6C 64 FD FE

02
« ? » code statement
F8 03 01
Constant 1, (one expression in the ? statement)

FC
Start of expression

FB
Pascal string type
0B 00
11 (string length)

48 65 .. 64 11 characters of the string “Hello world”

FD
End of expression

FE
End of statement
Hello2.fxp

Hello2.prg

#include foxpro.h

MessageBox('Hello world', MB_ICONEXCLAMATION + MB_YESNO)

Dvfp produces:

 MessageBox('Hello world',52)

You see that include file and literal constants cannot be retrieve. You also see that FoxPro computes constant expressions (48+4).

App decompilation: p1.app

When you decompile all the code modules (prg) of an APP into a unique file, you face the problem of ‘out of procedure statements’, as soon as you encounter the second prg. It is and error to write ‘out of procedure statements’ after the first procedure.

Exemple :

Soit un App composé des deux prg suivants :

p1.prg

 do One

 do p2

procedure One

 ? ‘One’

endproc

Et

 p2.prg

do Two

procedure Two

 ? ‘Two’

endproc

If you decompile into a unique file you get:
procedure p1 && added by dvfp when AllInOneFile is set

 do oNe

 do P2

procedure One

 ? 'One'

endproc

procedure p2 && added by dvfp when AllInOneFile is set

 do Two

procedure two

 ? 'two'

endproc

You will notice that the two ‘procedure’ statement added by Dvfp. So there is no problem left to compile the file. It is friendly to test if the generated code is compilable but the program is not equivalent, it can even do not run. But when you decompile into separated files these extra procedure statements are not added, and the source code is correct.

Simple expression: Somme.fxp
(Sorry ‘Somme’ is the French for sum)
To give you an idea of how expressions are compiled let us consider the following prg:

Somme.prg

local x, y, z

x = 1

y = 255

z = x + 2 * y

? z

Dvfp output is (with Dump=.T.)
…

* L=75, 3 variables :

* 0000 x

* 0001 y

* 0002 z

 AE F7 00 00 07 F7 01 00 07 F7 02 00 FE

 local x, y, z

 54 F7 00 00 10 FC F8 01 01 FD FE

 x = 1

 54 F7 01 00 10 FC F8 03 FF FD FE

 y = 255

 54 F7 02 00 10 FC F7 00 00 F8 01 02 F5 0D F7 01 00 04 06 FD FE

 z = x+2*m.y

 02 F8 03 01 F7 02 00 FE

 ? z

…

The first statement:

AE
‘local’ statement code
F7 00 00
x variable

07
comma
F7 01 00
y variable
07
comma
F7 02 00
z variable

FE
end of statement
Second statement:

54
assignment code statement
F7 00 00
x

10
=

FC
start of expression

F8 01 01
Constant 1 (width 1)

FD
end of expression

FE
end of statement
Third statement:

54
assignment
F7 01 00
y

10
=

FC
start of expression

F8 03 FF
Constant 255 (width 3)

FD
end of expression
FE
end of statement
And finally a simple expression:

54
assignment
F7 02 00
z

10
=

FC
start of expression

F7 00 00
x

F8 01 02
2

F5 0D
m.

F7 01 00
y

04
*

06
+

0D
end of expression

So expressions are stored as post fixed polish expressions.
More complex
You can use Dump or Dvfp on themselves (but in directories Test\Dvfp or Test\Dump). One the App will be extracted you will have to choose it instead of the Exe (This is a little bug of the release).

Recommandations
To dump large Apps only ask for CodePartDump:
[Options]

AppDump = .F.

CodePartDump = .T.

OtherPartDump = .F.

LineTable = .F.

To decompile large Apps (or exe/dll build with FoxPro) only ask for decompile in Dvfp.ini:

[prefs]

Decompile = .T.

Dump = .F.

Echo = .T.

AllInOneFile =

DebugExpressions = .F.

[Cosmetic]

AppHeader = .F.

PartTable = .F.

PartTitle = .F.

Partheader = .F.

ProcBetween = -

ClassBetween = =

In this case you will get nothing visible and the end of run. All the productions have been written into subdirectories created for that use. Go and have a look to prg, scdx, vcx, … and oth (others) directories.

Have fun.

Author RP
Oct-18-2006
p 1/10

